USING SCENARIOS IN THE 3S RIVER BASIN

Dr. Nick Souter

Sesan, Srepok, Sekong (3S) River Basin

0

- A transboundary river basin, within a transboundary river basin
- ~3.4 million people, 24% in poverty
- 329 native fish; 17 endemic; 14 critically endangered or endangered
- Most important sub-basin for migratory fish;
- 10% Mekong River Basin area; ~25% flow; 15% sediment
- Sediment drives Tonle Sap Lake productivity, sustains the Mekong delta rice factory
 - Numerous hydropower dams and future sites

Vietnam

- Sesan and Srepok River headwaters
- 3 million people
- Land clearance for coffee, soybean and pepper
- Almost full dam development
- Concerned about sediment supply to the delta

0

Laos

- Sekong River headwaters
- Low population density
- High poverty and dependence on natural resources
- Low level of land clearance
- Increasing level of dam development
- Wants to be the 'battery of Asia'

Cambodia

- Sekong, Sesan and Srepok
- Low population density
- High poverty and dependence on natural resources
- Rapid rate of land clearance, illegal logging and economic land concessions
- Seeking energy security
- Integral part of the productivity and diversity of the Tonle Sap fishery

3S FHI ASSESSMENT

- (Peterson et al. 2003)*
- or development plans to provide decision support
- Global climate change
- Land use change
- Water resource development

*DOI 10.1046/j.1523-1739.2003.01491.x

 Scenario planning, or scenario analysis, is a framework for exploring options and developing more robust plans in the face of irreducible uncertainty

Highlight trade-offs between ecosystem services and proposed management

3S - Hydropower **Development Scenarios**

- Sekong (Viet Nam, Lao PDR, Cambodia)
- Sesan (Viet Nam, Cambodia)
- Srepok (Viet Nam, Cambodia)
- S1 Dam development (65) Dec 2016
- S2 Lower Sesan II (commissioned)
- S3 Under construction (8)
- S4 Lower Sekong
- S5 Full development (111)

INDICATORS USED IN SCENARIOS

Ecosystem Vitality

- Deviation from the natural flow regime, modelled hydrological data, SWAT and • HECRAS
- Flow connectivity, Dendritic Connectivity Index (Cote et al 2009)*
- **Ecosystem Services**
- Biomass for consumption, migratory species habitat weighted Connectivity Index
- Sediment regulation, derived from modelled sediment flow data (Wild & • Loucks 2014)**

*DOI 10.1007/s10980-008-9283-y; ** DOI 10.1002/2014WR015457

	Dec 16	LS2	UC	Sekong
Basin score	66	66		
Sekong (Lao/Kh)	70	70		
Sesan (Vn/Kh)	42	42		
Srepok (Vn/Kh)	54	54		

	Dec 16	LS2	UC	Sekong
Basin score	66	66	61	
Sekong (Lao/Kh)	70	70	59	
Sesan (Vn/Kh)	42	42	41	
Srepok (Vn/Kh)	54	54	54	

	Dec 16	LS2	UC	Sekong
Basin score	66	66	61	61
Sekong (Lao/Kh)	70	70	59	59
Sesan (Vn/Kh)	42	42	41	41
Srepok (Vn/Kh)	54	54	54	54

	Dec 16	LS2	UC	Sekong
Basin score	66	66	61	61
Sekong (Lao/Kh)	70	70	59	59
Sesan (Vn/Kh)	42	42	41	41
Srepok (Vn/Kh)	54	54	54	54

Impact of dams on connectivity and biomass

EXISTING

78

94

+LOWER SESAN

26

 Dam location Connected stream Disconnected stream

Impact of dams on connectivity and biomass

+UNDER CONSTRUCTION

Biomass

26

+SEKONG

+FULL DEVELOPMENT

25

0.01

6

0.01

Sediment regulation

	Dec 16	LS2	UC	Sekong
Basin score	39	39	29	_

- Fish pass completed in November 2017
- Reportedly attracting fish, but quantifiable data not yet available

Fish passage

- Scenario assessment of a range of dam development scenarios and passability
- Read all about it in Shaad et al $(2018)^*$

Fish passage

The Future of Scenarios in the 3S

- Revising scenarios to better reflect reality
- Hydrological modelling being undertaken by NASA
- Assessing the lower Sesan II fish pass

ct reality Iertaken by NASA pass

FOR ADDITIONAL INFORMATION PLEASE VISIT FRESHWATERHEALTHINDEX. ORG FRESHWATERCONSERVATIONHEALTH INDEXINTERNATIONAL

the state of the second st

